Anaerobic biodegradation of oleic and palmitic acids: evidence of mass transfer limitations caused by long chain fatty acid accumulation onto the anaerobic sludge.
نویسندگان
چکیده
Palmitic acid was the main long chain fatty acids (LCFA) that accumulated onto the anaerobic sludge when oleic acid was fed to an EGSB reactor. The conversion between oleic and palmitic acid was linked to the biological activity. When palmitic acid was fed to an EGSB reactor it represented also the main LCFA that accumulated onto the sludge. The way of palmitic acid accumulation was different in the oleic and in the palmitic acid fed reactors. When oleic acid was fed, the biomass-associated LCFA (83% as palmitic acid) were mainly adsorbed and entrapped in the sludge that became "encapsulated" by an LCFA layer. However, when palmitic acid was fed, the biomass-associated LCFA (the totality as palmitic acid) was mainly precipitated in white spots like precipitates in between the sludge, which remained "non-encapsulated." The two sludges were compared in terms of the specific methanogenic activity (SMA) in the presence of acetate, propionate, butyrate, and H(2)CO(2), before and after the mineralization of similar amounts of biomass-associated LCFA (4.6 and 5.2 g COD-LCFA/g of volatile suspended solids (VSS), for the oleic and palmitic acid fed sludge, respectively). The "non-encapsulated," sludge exhibited a considerable initial methanogenic activity on all the tested substrates, with the single exception of butyrate. However, with the "encapsulated" sludge only methane production from ethanol and H(2)/CO(2) was detected, after a lag phase of about 50 h. After mineralization of the biomass-associated LCFA, both sludges exhibited activities of similar order of magnitude in the presence of the same individual substrates and significantly higher than before. The results evidenced that LCFA accumulation onto the sludge can create a physical barrier and hinder the transfer of substrates and products, inducing a delay on the initial methane production. Whatever the mechanism, metabolic or physical, that is behind this inhibition, it is reversible, being eliminated after the depletion of the biomass-associated LCFA.
منابع مشابه
Accumulation of long chain fatty acids onto anaerobic sludge under steady state and shock loading conditions: effect on acetogenic and methanogenic activity.
Accumulation of substrate onto the biomass was quantified under steady-state and shock conditions in a fixed bed reactor fed with an oleic acid-based synthetic effluent. The accumulation of substrate onto the sludge was more dependent on oleic acid concentration than on oleic acid loading rate and decreased the acetogenic, acetoclastic and hydrogenophilic activity. However, even when the methan...
متن کاملInhibition of Thermophilic Anaerobic Digestion of Waste Food by Long Chain Fatty Acids and Propionate
متن کامل
Image analysis, methanogenic activity and molecular biological techniques to monitor granular sludge from an egsb reactor fed with oleic acid
Morphological changes in anaerobic granular sludge fed with increasing loads of oleic acid were quantified by image analysis. The combination of this technique with data on the accumulation of adsorbed long chain fatty acid give insight into the mechanisms of sludge disintegration, flotation and washout The molecular characterization of microbial community indicated that the bacterial domain wa...
متن کاملDetection and quantification of long chain fatty acids in liquid and solid samples and its relevance to understand anaerobic digestion of lipids.
A method for long chain fatty acids (LCFA) extraction, identification and further quantification by gas chromatography was developed and its application to liquid and solid samples collected from anaerobic digesters was demonstrated. After validation, the usefulness of this method was demonstrated in a cow manure digester receiving pulses of an industrial effluent containing high lipid content....
متن کاملDetermination and study the fatty acid contents and their seasonal variations by temperature of a dominant bivalve(Callista umbonella) of Haleh Creek
In this study fatty acid contents, because of the importance in human’s life, and their seasonal variations of a dominant bivalve of Haleh Creek were determined for the first time. Fatty acid identification was done by GC-MS (Gas Chromatography–Mass Spectrometry) method. After collecting and dissecting the species from the shells, samples weighed and frozen for further experiments. All the samp...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biotechnology and bioengineering
دوره 92 1 شماره
صفحات -
تاریخ انتشار 2005